Design Approach for Texture Classification using Discrete Cosine Transform with Soft

نویسنده

  • Pankaj H. Chandankhede
چکیده

Texture can be considered as a repeating pattern of local variation of pixel intensities. In texture classification the goal is to assign an unknown sample image to a set of known texture classes. One of the difficulties in texture classification was the lack of tools that characterize textures. Classification of textures has received attention during last few decades. As DCT works on gray level images, the color scheme of each image is transformed into gray levels. Then DCT is applied on the gray level images to obtain DCT coefficient. These DCT coefficient are use to train the neural network. For classifying the images using DCT, two popular soft computing techniques namely neurocomputing and neuro-fuzzy computing are used. A performance comparison was made among the soft computing models for the texture classification problem. It is observed that the proposed neuro-fuzzy model performed better than the neural network. Keywords— Texture classification, DCT, Neurocomputing, NeuroFuzzy, Soft Computing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design Approach of Texture Classification using Discrete Cosine Transform with Soft Computing Tool

Texture can be considered as a repeating pattern of local variation of pixel intensities. In texture classification the goal is to assign an unknown sample image to a set of known texture classes. One of the difficulties in texture classification was the lack of tools that characterize textures. Classification of textures has received attention during last few decades. As DCT works on gray leve...

متن کامل

Dct Based Texture Classification Using a Soft Computing Approach

Classification of texture patterns is one of the most important problems in pattern recognition. In this paper, we present a classification method based on the Discrete Cosine Transform (DCT) coefficients of texture images. As DCT works on gray level images, the color scheme of each image is transformed into gray levels. For classifying the images using DCT, we used two popular soft computing t...

متن کامل

DCT Based Texture Classification Using Soft Computing Approach

Classification of texture pattern is one of the most important problems in pattern recognition. In this paper, we present a classification method based on the Discrete Cosine Transform (DCT) coefficients of texture image. As DCT works on gray level image, the color scheme of each image is transformed into gray levels. For classifying the images using DCT we used two popular soft computing techn...

متن کامل

Texture Classification Based on DCT and Soft Computing

Classification of texture pattern is one of the most important problems in pattern recognition. In this paper, we present a classification method based on the Discrete Cosine Transform (DCT) coefficients of texture image. As the DCT works on gray level image, the color scheme of each image is transformed into gray levels. For classifying the images with DCT we used two popular soft computing te...

متن کامل

Three-dimensional Texture Classification Using the Discrete Cosine Transform

This thesis proposes a novel approach to classifying texture in three dimensional (volumetric) images using a bank of 3-D filters derived from the discrete cosine transform (DCT). This method is tested on collections of synthetic and natural 3-D textures. Classification accuracy is compared to that obtained with 2-D DCT and 3-D Gaussian Markov random field (GMRF) texture features [20]. The expe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011